Semi-supervised Clustering for Intelligent User Management

نویسندگان

  • Raymond J. Mooney
  • Mark W. Johnson
چکیده

As IT systems become more complex and the number of users increases dramatically, automation of user management tasks becomes a high priority for administrators. Grouping users intelligently based on their interactions with the system can serve two purposes. First, it can supply administrators with a global view of the user pool via meaningful user classes that are based on the actual system usage information. Second, given expressive clusters of users, policies that apply to identified user groups can be developed along with profiles corresponding to particular clusters, alleviating the need to tailor group management tasks to a diverse set of users. Thus, grouping users based on their system usage provides insights about the set of users that can be directly translated into typical user profiles and policies for user groups. We propose to employ state-of-the-art machine learning algorithms to discover user groups automatically based on system usage data. Administrator preferences can be incorporated in the group formation process as feedback that may be expressed as assigning certain users to pre-defined groups, or separating users to belong to different groups. Once the groups are created, classification algorithms will be trained for categorizing users. We expect our approach to result in an adaptive, flexible framework for user management that will lead to optimal resource utilization and will be responsive to the needs of administrators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Prior Knowledge from Data Distribution to Migrate from Blind to Semi-Supervised Clustering

Although many studies have been conducted to improve the clustering efficiency, most of the state-of-art schemes suffer from the lack of robustness and stability. This paper is aimed at proposing an efficient approach to elicit prior knowledge in terms of must-link and cannot-link from the estimated distribution of raw data in order to convert a blind clustering problem into a semi-supervised o...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

A confidence-based active approach for semi-supervised hierarchical clustering

Semi-supervised approaches have proven to be effective in clustering tasks. They allow user input, thus improving the quality of the clustering obtained, while maintaining a controllable level of user intervention. Despite being an important class of algorithms, hierarchical clustering has been little explored in semisupervised solutions. In this report, we address the problem of semi-supervise...

متن کامل

Active semi-supervised fuzzy clustering

Clustering algorithms are increasingly employed for the categorization of image databases, in order to provide users with database overviews and make their access more effective. By including information provided by the user, the categorization process can produce results that come closer to user’s expectations. To make such a semi-supervised categorization approach acceptable for the user, thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004